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   partially broken CRHF such as SHA-1, a (hopefully) better
   collision-resistant family such as SHA2, or any hash function to be

   designed in the future.

   While the above indicates general relations between the strengths 
   and vulnerabilities of different hashing tasks it does not tell us
   how to instantiate a TCR function. We discuss this in the next 

   section.  Later, in section 4, we explain how to integrate
   randomized hashing into signatures (specifically, how to sign and
   transport the index r).

3. A TCR Construction for Iterated Hash Functions

   We propose a specific way to convert a single hash function H 
   (e.g SHA-1 or SHA2) into a TCR function family.  The design

   principles that we follow are:

   (1) Do not change H: randomization is applied to the hash input
        before the hash function is called.
   (2) Minimize performance impact.
   (3) Increase (heuristically) the likelihood of resistance of the

        family to TCR attacks.

   In 3.1 we present a basic construction (with some heuristic
   rationale in Appendix A). In 3.2 we list some variants which take
   into account some further trade-offs between performance and
   plausible security.  We stress that these methods, although

   plausible, need to be scrutinized further before they can be
   adopted. 

3.1 A simple randomized hash construction

   Let H be a hash function that processes the message to be hashed in
   512-bit blocks. For example, if H is an integrated hash function

   a-la-Merkle-Damgard then the underlying compression function has as
   inputs an IV and a 512-bit data input. (We use 512 bits as the
   typical block size but other values are possible.) Let XOR denote
   the bit-wise exclusive-or operation.

   Given a message m to be hashed, the signer (or "hasher") chooses a 

   512-bit random value r, and XORs each 512-bit block of m with r. 
   (If m is not an exact multiple of 512-bit blocks then the shorter
   last block is XORed with an appropriately truncated r.) 
   In other words, we concatenate r to itself until we get a string r*

   of the same length of m, and then compute m XOR r*. 
   We define H_r(m) to be H(m XOR r*). 

   Note: By our definition the result of (m XOR r*) is of the same
   length as m; therefore, the length padding defined by Merkle-Damgard

   functions such as SHA-1 is applied to (m XOR r*). In other words,
   the length padding is not subject to the XOR with r*.
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   In Appendix A we provide some rationale on the choice of this
   particular way of converting iterated hash functions into TCR.

   Variants of this method are presented next.

3.2 Some Randomized Hash Variants

   A possible strengthening of our construction from Sec 3.1 can be
   obtained if, in addition to XORing each block of input with the
   value r, one also prepends r to the input to H, i.e., the input to H

   consists of the block r concatenated with (m XOR r*).  This provides
   a randomizing effect to the initial IV of H (in the spirit of the
   HMAC construction).

   An even more conservative variant could interleave the block r
   between any two blocks of the original message, thus providing an IV

   randomization feature for each application of the compression
   function.  The obvious drawback is the added computation (double the
   cost of the original hash function).

   Another natural idea is to add a layer of security by XORing a

   different random pad to each block of the message.  Clearly, this
   adds a non-trivial computational cost (one would need to generate a
   pad of the length of the message via some PRG). A midway strategy
   could be to start with a pad of the length of a single block and

   slightly (and inexpensively) change this pad for each new block of
   input, for example by applying circular byte rotation to the
   previous block pad. A similar idea would be to derive the pad from a
   byte-oriented LFSR whose initial value is the key r. 

   Finally, if the generation of a 512-bit random (or pseudo-random)

   quantity r for each signature is regarded as expensive (possibly
   true for low-power devices, smart cards, etc.) then it is possible
   to define r as the concatenation of a shorter pad.  For example, in
   order to define r one could choose a random 128-bit string and

   concatenate it four times to create r. Given the heuristic nature of
   our constructions this may be considered a reasonable trade-off.

4. TCR Hashing and Signature Encoding

   Recall how randomized hashing is to be used in the context of digital
   signatures. For signing a message m, the signer chooses at random a

   value r and computes SIG(r,H_r(m)) where SIG represents a signing
   algorithm (such as RSA or DSS). More precisely, the signer will use
   a well-defined standard encoding of the concatenation of the values 
   r and H_r(m) and then apply algorithm SIG to this encoding. 

   The signature on message m consists of the pair (r,SIG(r,H_r(m)).  

   The above requires changing current signature schemes in four ways:

   (1) Choosing a random (unpredictable) index r for each signature, 
   (2) Replacing the current hashing of a message m from H(m) to H_r(m),
   (3) Signing r, and
   (4) Transporting r as part of the signature.
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   Here we discuss the required changes to existing message encodings
   for implementing the last 3 points.  We focus on the two main

   algorithms in use: RSA and DSS. We note that while changing existing
   encoding standards may be one of the possible obstacles to adopting
   randomized hashing, this change is instrumental in allowing for more
   secure and robust signature schemes not only in the short term but

   in the farther future as well. We suggest that this change to the
   standards be specified and adopted as soon as possible. As we see
   below, these changes can be specified in a way that is independent
   of the specific randomized hash function to be used.

   We start with RSA. The most common encoding in use with RSA
   signatures is PKCS#1 v1.5. It specifies that given a message m to be
   signed, the input to the RSA signature function is a string composed
   of the hash value H(m) (computed on the message m using a

   deterministic hash function such as SHA-1) which is padded to the
   length of the RSA modulus with a standard deterministic padding
   (this padding contains information to identify the hash algorithm in
   use).  This encoding can be extended to deal with randomized hashing

   as follows.  First, the value H(m) is replaced with H_r(m) for r
   chosen by the signer. Second, part of the deterministic padding
   (which is currently filled with repeated 0xff octets) is replaced
   with the value of r. In this way, r is signed and, at the same time,

   it is made available to the verifier of the signature without any
   increase in the size of signatures (r is recovered by the verifier
   by inverting the signature operation). 

   Another RSA encoding, called EMSA-PSS, is standardized by PKCS#1 v2.1
   and is based on the randomized signature scheme of Bellare and

   Rogaway [BR96]. Unfortunately, the standard defines an encoding in
   which the first step is to apply a deterministic hash function (say,
   SHA-1) to the message m. Only then the randomized encoding scheme of
   PSS is applied. As a result, the signature scheme that uses EMSA-PSS

   is broken if the hash function is not fully collision resistant. 
   In order to use this scheme with randomized hashing, one would
   replace the current H(m) value in the encoding with H_r(m) and the
   value r would be encoded in a way that the verifier of a signature

   can recover it before applying the randomized hashing. The original
   PSS scheme from [BR96] can be used, or adapted, to achieve such an
   encoding. 

   Two points to remark regarding the applicability of PSS here are:
   first, the original PSS scheme is patented -- see US Patent 6266771 

   (which may or may not be an obstacle for adoption).  Second, the
   main analytical benefit of PSS is its provability based on the so
   called "random oracle model".  While this provides a good heuristic
   backing to the construction, one has to take into account that here

   we are dealing explicitly with lowering the security requirements
   from the hash function, so it is questionable how random-like these
   functions may be required to be. Formal proofs aside, the PSS scheme
   offers good heuristic advantages over the PKCS#1 v1.5 in that it

   better randomizes the input to the RSA signing algorithm.
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   Regarding the DSS (or DSA) signature algorithm, the first thing to
   note is that this is already a randomized signature scheme. 

   A DSS signature is composed of a pair of elements (R,S) where R is a
   random element in the DSS group and S is a value computed as a
   function of the private key of the signer, the discrete logarithm of
   R (denoted k), and the value H(m) (where m is the message to be

   signed and H a deterministic hash function). In order to convert
   this scheme to use randomized hashing one can use R itself as the
   index to the hash family, i.e., r=R (or to derive r from R in some
   deterministic way).  Then one would replace H(m) with H_r(m).  

   In this way the size of signatures is unchanged and no further
   processing is required to generate r. Also note that while the
   signature component R is not strictly "signed", the attacker cannot
   control or choose this value (indeed, an attack that finds values R

   and S for which (R,S) are a valid signature of H_R(m), for a value
   H_R(m) not signed by the legitimate signer, would contradict the
   basic security of DSS). One may argue that the use of H_r(m) instead
   of H(m) can be viewed as an "implementation" of the random-oracle

   version of DSS as analyzed by Pointcheval and Stern [PS96]; the same
   caveats expressed in the case of PSS in relation to the use of the
   random oracle model apply here as well. 

   One consideration in regards to using the component R of DSS

   signatures as the index to the randomized hash family is that, 
   in order to ensure the TCR property, this index needs to be unknown
   (unpredictable) to the attacker when the latter chooses the message
   m to be signed. If the value of R is computed off-line by the signer

   (which is possible in the case of DSS) and is leaked before the
   attacker choses m then the benefit of randomized hashing is lost.
   Hence, R=g^k should be kept secret together with k until the
   signature is issued. This is not a fundamental limitation to the

   practice of DSS since the DSS scheme already requires (in an
   essential way) that k be kept secret, even if computed off-line,
   since its discovery by the attacker is equivalent to finding the
   secret private key of the signer!

5. Security Considerations

   This document presents mechanisms that, if adopted by standard

   bodies such as the IETF, will result in significant improvements to
   our current and future digital signature systems. While this
   document focuses on randomized modes of operation of hash functions
   that provide randomized hashing without changing existing

   algorithms, it is advisable that future hash families will be
   designed with randomized hashing and TCR requirements in mind.   
   For example, new schemes that follow the Merkle-Damgard approach may
   consider allowing for the masking of intermediate values with

   optional user provided inputs (that is, such a mask could be set to
   a default value, say 0, for deterministic uses of the hash function,
   and to user-provided values when randomization is desired).  The
   important point is that implementations of the function will be

   ready to accept such masks without having to change the function.
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   We note that all references to "randomness" in this document should
   be interpreted as "pseudo-randomness" provided one uses a

   cryptographically strong pseudorandom generator (or pseudo-random
   function) initialized with a strong unpredictable seed.

   We also mention that using TCR hashing may mean that the legitimate
   signer can find two messages with the same signature (since it is

   the legitimate signer that is choosing the randomness r). One should
   note, however, that this has no bearing on non-repudiation (as the
   signer is still bound to both messages). Moreover, as shown in
   [SPMS02], even if one uses CRHF some secure signature schemes (such

   as ECDSA) may allow a signer to find two different messages whose
   signature string is the same. Still, as mentioned at the end of the
   Introduction, there may be OTHER applications of CRHF that cannot be
   replaced with a TCR family.

   Finally, the general approaches to randomized hashing and digital

   signatures discussed here do not depend on the specifics of the
   concrete constructions that we proposed here. Other forms of
   randomized hashing and TCR schemes may be superior to the ones
   proposed here and further proposals are encouraged.
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Appendix A -  Rationale for the Proposed TCR Construction(s)

   Our TCR proposals follow the following principles:

   (1) Allow the use of existing functions such as SHA-1 and SHA2 

       (in particular, iterated hash functions a la Merkle-Damgard).
   (2) Do not change the hash function but only the interface to it
       (e.g., in our proposal randomization is achieved via the input
       to the function and therefore implemented hash functions, in

       either software or hardware, can be used without modification).
   (3) Use as weak as possible properties of the compression function
       underlying the hash construction.

   Our construction is general enough to be used with any hash function
   that processes the incoming data as blocks. Yet, we focus in our

   discussion here on Merkle-Damgard (M-D) type of hash functions since
   these are the most common schemes in practice.

   While (1) and (2) are obvious properties of our suggested
   construction we elaborate here on point (3). Ideally, we would have

   liked to provide a mathematical theorem proving the security of our
   construction using only relatively weak requirements from the
   underlying compression function. While such theorems exist for some
   specific constructions (e.g., [BR97,S00]), they all include

   operations that violate the principle of using the existing hash
   functions without any change (e.g., masking the intermediate value of
   the compression function with each call to this function). We thus
   settle for a heuristic rationale that should be scrutinized in light

   of the evolving ideas in the area of hash function cryptanalysis.

   Let H be a M-D function (the reader can think of SHA-1 for
   concreteness) and h be the corresponding compression function.
   That is, h acts on two inputs, a and b, where a represents an
   intermediate value (IV) and b is a 512-bit block, and the output

   of h is of the length of the IV (IV lengths vary with different
   constructions, e.g., 160, 256, etc.).  The function H itself is
   defined for arbitrary inputs by iterating h over the successive
   blocks of the input with each iteration using the IV computed by the

   previous application of h (the first IV is set to some constant
   defined by the specification of H).

   Consider now a family of compression functions derived from h as
   follows: for each 512-bit index r, define h_r(a,b)=h(a,b XOR r).
   It is easy to see that iterating h_r as in a M-D construction one

   obtains the function H_r that we defined in 3.1.

   Merkle and Damgard showed that if a compression function h is
   collision resistant with respect to fixed-length inputs, then the
   function H obtained by iterating h is collision resistant on

   arbitrary inputs.  We would like to claim the same with respect to
   the property of target-collision resistance (TCR), namely, that if 
   h is TCR so is H.  This, however, is not necessarily the case. 
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   Yet, an "approximation" to this result was recently shown by Hong,
   Preneel and Lee [HPL04]. They show that if the construction h_r has

   a property called "n-order TCR" then the iterated family H_r is TCR
   for messages of up to n blocks.  The property of n-order TCR is
   defined by the following game between Alice (the Attacker) and a
   "hasher" Bob.

   (1) Bob chooses an index r and keeps it secret.
   (2) For i=1,...,n: Alice chooses a pair (a_i,b_i) and receives from 
       Bob the value h_r(a_i,b_i).
   (3) Alice chooses a pair (a,b).

   (4) Bob reveals r to Alice
   Alice wins the game if she can find (a',b') different from (a,b)
   such that h_r(a,b)=h_r(a',b').

   In other words, Alice needs to carry a TCR attack but she is 
   allowed to query h_r on n inputs of her choice before committing to

   the first colliding message and before learning the value of r.
   Intuitively, the difference with a regular TCR attack is that Alice
   has now an advantage in choosing (a,b) since she can first learn
   something about r from the first n queries. 

   A family h is called n-order TCR if any efficient attacker (Alice)

   can only find (a',b') as above with insignificant probability. 
   Before we continue it is important to clarify that the above game
   defining n-order TCR functions is not a game that reflects an actual
   interaction between an attacker and a victim in real life but it is

   only a virtual game used to define the security of a function.

   How much does the extra phase (2) in the game from above help Alice 
   to find collisions? This of course depends on the specific function,
   and to some extent also on the value of n. Note that if one lets n

   to be huge (say 2^80 in the case of SHA-1) then Alice can use this
   "learning phase" to find colliding pair (a_i,b_i) and (a_j,b_j) that
   she can then use as (a,b) and (a',b') respectively. But recall that
   n represents the length in blocks of the messages to be hashed with

   the iterated construction, so it will typically be quite small.
   (I.e., n=4 or so in the case of certificates, and n < 2^30 even for
   huge documents.) Hence one may hope that the learning phase will
   not be sufficiently useful for Alice to choose the colliding pair. 

   In other words, while in order to break a collision-resistant hash

   function an attacker can spend a HUGE amount of OFF-LINE computation
   for finding collisions, for breaking an n-order TCR function the
   attacker is limited to only MODERATE ON-LINE interaction with the
   hasher after which it needs to commit to a first colliding value x.

   Only then the attacker receives the actual value r for which it
   needs to find x' such that h_r(x)=h_r(x'). 

   We also comment that the common view of the compression function
   h(a,b) as a block cipher with key b and input a gives rise to another
   heuristic argument supporting the view of h_r as n-order TCR.

   Viewing h(a,b) as a block cipher, phase (2) of the attack from above
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   on h_r is just a chosen-plaintext related-key attack on the block
   cipher h. If h resists such attacks with a moderate number of

   queries, then phase (2) does not help the attacker learn much about 
   r. Hence, if h is both TCR and a sufficiently robust block cipher,
   then it is also an n-order TCR.

   As said, [HPL04] show that if a compression family h={h_r} is

   n-order TCR then the family H={H_r} is TCR on n block inputs 
   (here H_r is a Merkle-Damgard iteration of h_r). Applying this
   result to our case, we obtain that if the construction 
   h_r(a,b) = h(a, b XOR r) is an n-order TCR then the family H_r

   described in 3.1 is TCR for n-block inputs.  
   In other words, any TCR attack against the family H_r that uses
   n-block messages, translates into an n-order TCR attack against the
   compression function family h_r with only n initial oracle queries.

   This provides some foundation to the belief that even the existing

   hash functions are significantly more secure in the sense of TCR
   than for collision resistance when used as specified here. 
   In addition, one should examine the current attacks and see to what
   extent they apply to the defined functions.  In particular, we note

   that the XORing of input blocks with a random block, while it
   preserves differentials, it also destroys the ability of the
   attacker to set some of the bits of the colliding messages to values
   of its choice. It seems that an attack that takes advantage of

   differentials in this setting would need to rely on universal
   differentials that depend only on the hash function and for which
   most pairs of messages with that difference would collide.

   Finally, we point out to another "motivating" element in our design.
   Remember that SPR (second pre-image resistant) functions are a weaker

   (i.e., easier to accomplish) version of TCR functions where the 
   attacker cannot choose the first colliding value but rather this
   value is determined at random.  A straightforward way to transform
   an SPR compression function h into a TCR family [S00] is to choose a

   pair r=(s1,s2), where s1,s2 are random values of the length of the
   IV and block size, respectively, and define 
   h_r(a,b)=h(a XOR s1, b XOR s2).  Unfortunately, iterating such an
   h_r is impractical as it requires modifying H such that the IV can

   be XORed with S1 in each iteration of h.  Therefore, instead of
   using this full transformation of SPR into TCR we carry the
   randomization only in the second input of h, namely, in our
   construction in 3.1 we use h_r(a,b)=h(a,b XOR r) (when viewing h as

   a block cipher, as mentioned before, the XORing with r provides for
   randomization of the cipher key).

    

    

Halevi and Krawczyk                                            [Page 13]



�

Internet Draft        draft-irtf-cfrg-rhash-00.txt          12 May, 2005

Authors' Addresses
    

   Shai Halevi   
      shaih@alum.mit.edu
   Hugo Krawczyk 
      hugo@ee.technion.ac.il

   IBM T.J. Watson Research Center
   19 Skyline Drive
   Hawthorne, NY 10532
   USA

Full Copyright Statement 

   Copyright (C) The Internet Society (2005).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors

   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR
   IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET

   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Halevi and Krawczyk                                            [Page 14]


